Research on the Application and Performance Optimization of GPU Parallel Computing in Concrete Temperature Control Simulation

Author:

Zheng Xuerui1,Jin Jiping2,Wang Yajun2,Yuan Min1,Qiang Sheng1

Affiliation:

1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

2. The First Engineering Bureau of Henan Water Conservancy, Zhengzhou 450016, China

Abstract

With the development of engineering technology, engineering has higher requirements for the accuracy and the scale of simulation calculation. The computational efficiency of traditional serial programs cannot meet the requirements of engineering. Therefore, reducing the calculation time of the temperature control simulation program has important engineering significance for real-time simulation of temperature field and stress field, and then adopting more reasonable temperature control and crack prevention measures. GPU parallel computing is introduced into the temperature control simulation program of massive concrete to solve this problem and the optimization is carried out. Considering factors such as GPU clock rate, number of cores, parallel overhead and Parallel Region, the improved GPU parallel algorithm analysis indicator formula is proposed. It makes up for the shortcomings of traditional formulas that focus only on time. According to this formula, when there are enough threads, the parallel effect is limited by the size of the parallel domain, and when the parallel domain is large enough, the efficiency is limited by the parallel overhead and the clock rate. This paper studies the optimal Kernel execution configuration. Shared memory is utilized to improve memory access efficiency by 155%. After solving the problem of bank conflicts, an accelerate rate of 437.5× was realized in the subroutine of the matrix transpose of the solver. The asynchronous parallel of data access and logical operation is realized on GPU by using CUDA Stream, which can overlap part of the data access time. On the basis of GPU parallelism, asynchronous parallelism can double the computing efficiency. Compared with the serial program, the accelerate rate of inner product matrix multiplication of the GPU asynchronous parallel program is 61.42×. This study further proposed a theoretical formula of data access overlap rate to guide the selection of the number of CUDA streams to achieve the optimal computing conditions. The GPU parallel program compiled and optimized by the CUDA Fortran platform can effectively improve the computational efficiency of the simulation program for concrete temperature control, and better serve engineering computing.

Funder

National Natural Science Foundation of China

Water Conservancy Science and Technology Project of Henan Province, China

Publisher

MDPI AG

Subject

Building and Construction,Civil and Structural Engineering,Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3