Abstract
Aiming at the practical constraints of high resource occupancy and complex calculations in the existing Spike Neural Network (SNN) image classification model, in order to seek a more lightweight and efficient machine vision solution, this paper proposes an adaptive threshold Spike Neural Network (SNN) model of lateral inhibition of Spike-Timing-Dependent Plasticity (STDP). The conversion from grayscale image to pulse sequence is completed by convolution normalization and first pulse time coding. The network self-classification is realized by combining the classical Spike-Timing-Dependent Plasticity algorithm (STDP) and lateral suppression algorithm. The occurrence of overfitting is effectively suppressed by introducing an adaptive threshold. The experimental results on the MNIST data set show that compared with the traditional SNN classification model, the complexity of the weight update algorithm is reduced from O(n2) to O(1), and the accuracy rate can still remain stable at about 96%. The provided model is conducive to the migration of software algorithms to the bottom layer of the hardware platform, and can provide a reference for the realization of edge computing solutions for small intelligent hardware terminals with high efficiency and low power consumption.
Funder
The Natural Science Foundation of the Jiangsu Higher Education Institutions of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献