Direct Training via Backpropagation for Ultra-Low-Latency Spiking Neural Networks with Multi-Threshold

Author:

Xu ChangqingORCID,Liu Yi,Chen DongdongORCID,Yang Yintang

Abstract

Spiking neural networks (SNNs) can utilize spatio-temporal information and have the characteristic of energy efficiency, being a good alternative to deep neural networks (DNNs). The event-driven information processing means that SNNs can reduce the expensive computation of DNNs and save a great deal of energy consumption. However, high training and inference latency is a limitation of the development of deeper SNNs. SNNs usually need tens or even hundreds of time steps during the training and inference process, which causes not only an increase in latency but also excessive energy consumption. To overcome this problem, we propose a novel training method based on backpropagation (BP) for ultra-low-latency (1–2 time steps) SNNs with multi-threshold. In order to increase the information capacity of each spike, we introduce the multi-threshold Leaky Integrate and Fired (LIF) model. The experimental results show that our proposed method achieves average accuracy of 99.56%, 93.08%, and 87.90% on MNIST, FashionMNIST, and CIFAR10, respectively, with only two time steps. For the CIFAR10 dataset, our proposed method achieves 1.12% accuracy improvement over the previously reported directly trained SNNs with fewer time steps.

Funder

National Natural Science Foundation of China Youth fund

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. STCSNN: High energy efficiency spike-train level spiking neural networks with spatio-temporal conversion;Neurocomputing;2024-11

2. DT-SCNN: dual-threshold spiking convolutional neural network with fewer operations and memory access for edge applications;Frontiers in Computational Neuroscience;2024-05-30

3. Time-Sensitive Semantic Communication Using Dynamic Spiking Neural Networks;2023 IEEE International Conference on Memristive Computing and Applications (ICMCA);2023-12-08

4. Artificial intelligence-based spatio-temporal vision sensors: applications and prospects;Frontiers in Materials;2023-12-07

5. Research on Multi-Model Fusion Method for Similar Multi-domain;2023 5th International Conference on Robotics and Computer Vision (ICRCV);2023-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3