The Effect of Pre-Treatment of Arabica Coffee Beans with Cold Atmospheric Plasma, Microwave Radiation, Slow and Fast Freezing on Antioxidant Activity of Aqueous Coffee Extract

Author:

Tarasov AlekseyORCID,Bochkova Anastasia,Muzyukin Ilya,Chugunova Olga,Stozhko NataliaORCID

Abstract

Thermal and non-thermal technologies used in food processing should be not only effective in terms of decontamination and preservation but also minimize undesirable losses of natural bioactive compounds. Arabica (Coffea arabica) is the most cultivated variety of coffee, making it a valuable source of phytonutrients, including antioxidants. In the present study, green and roasted Arabica coffee beans were treated with slow freezing (SF), fast freezing (FF), microwave radiation (MWR) and cold atmospheric plasma (CAP). Moisture content (MC) of coffee beans and antioxidant activity (AOA) of aqueous extracts were measured. Green coffee showed a decrease in MC after MWR treatment, and roasted coffee showed an increase in MC after freezing. After SF and FF at −19 °C for 24 h, all extract samples showed an increase in AOA by 4.1–17.2%. MWR treatment at 800 W for 60 s was accompanied by an increase in the AOA of green coffee extracts by 5.7%, while the changes in the AOA of roasted coffee extracts were insignificant. Sequential combined treatments of SF + MWR and FF + MWR resulted in an additive/synergistic increase in the AOA of green/roasted coffee extracts, up to +23.0%. After CAP treatment with dielectric barrier discharge (DBD) parameters of 1 μs, 15 kV and 200 Hz for 5 and 15 min, green coffee showed a decrease in the extract AOA by 3.8% and 9.7%, respectively, while the changes in the AOA of roasted coffee extracts were insignificant. A high positive correlation (r = 0.89, p < 0.001) between AOA and MC was revealed. The results obtained indicate that SF, FF, MWR and combined treatments may be applied at the pre-extraction stage of coffee bean preparation in order to increase the yield of antioxidant extractives.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3