Integrating Satellite Rainfall Estimates with Hydrological Water Balance Model: Rainfall-Runoff Modeling in Awash River Basin, Ethiopia

Author:

Adane Girma BerheORCID,Hirpa Birtukan Abebe,Gebru Belay Manjur,Song CholhoORCID,Lee Woo-KyunORCID

Abstract

Hydrologic models play an indispensable role in managing the scarce water resources of a region, and in developing countries, the availability and distribution of data are challenging. This research aimed to integrate and compare the satellite rainfall products, namely, Tropical Rainfall Measuring Mission (TRMM 3B43v7) and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), with a GR2M hydrological water balance model over a diversified terrain of the Awash River Basin in Ethiopia. Nash–Sutcliffe efficiency (NSE), percent bias (PBIAS), coefficient of determination (R2), and root mean square error (RMSE) and Pearson correlation coefficient (PCC) were used to evaluate the satellite rainfall products and hydrologic model performances of the basin. The satellite rainfall estimations of both products showed a higher PCC (above 0.86) with areal observed rainfall in the Uplands, the Western highlands, and the Lower sub-basins. However, it was weakly associated in the Upper valley and the Eastern catchments of the basin ranging from 0.45 to 0.65. The findings of the assimilated satellite rainfall products with the GR2M model exhibited that 80% of the calibrated and 60% of the validated watersheds in a basin had lower magnitude of PBIAS (<±10), which resulted in better accuracy in flow simulation. The poor performance with higher PBIAS (≥±25) of the GR2M model was observed only in the Melka Kuntire (TRMM 3B43v7 and PERSIANN-CDR), Mojo (PERSIANN-CDR), Metehara (in all rainfall data sets), and Kessem (TRMM 3B43v7) watersheds. Therefore, integrating these satellite rainfall data, particularly in the data-scarce basin, with hydrological data, generally appeared to be useful. However, validation with the ground observed data is required for effective water resources planning and management in a basin. Furthermore, it is recommended to make bias corrections for watersheds with poorlyww performing satellite rainfall products of higher PBIAS before assimilating with the hydrologic model.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference54 articles.

1. A Parsimonious Hydrological Model for a Data Scarce Dryland Region

2. A pre-calibration approach to select optimum inputs for hydrological models in data-scarce regions

3. Challenges with availability and quality of climate data in Africa;Dinku,2019

4. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin

5. Selecting hydrologic modelling approaches for water resource assessment in the Yongdam watershed;Tegegne;J. Hydrol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3