Quality control of hourly rain gauge data based on radar and satellite multi-source data

Author:

Yan Qiaoqiao12ORCID,Zhang Bingsong1,Jiang Yi23,Liu Ying1,Yang Bin4,Wang Haijun1

Affiliation:

1. a Hubei Meteorological Information and Technology Support Center, Wuhan 430074, China

2. b Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province, Haikou 570203, China

3. c Meteorological Information Center of Hainan Province, Haikou 570203, China

4. d School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

ABSTRACT Rain gauge networks provide direct precipitation measurements and have been widely used in hydrology, synoptic-scale meteorology, and climatology. However, rain gauge observations are subject to a variety of error sources, and quality control (QC) is required to ensure the reasonable use. In order to enhance the automatic detection ability of anomalies in data, the novel multi-source data quality control (NMQC) method is proposed for hourly rain gauge data. It employs a phased strategy to reduce the misjudgment risk caused by the uncertainty from radar and satellite remote-sensing measurements. NMQC is applied for the QC of hourly gauge data from more than 24,000 hydro-meteorological stations in the Yangtze River basin in 2020. The results show that its detection ratio of anomalous data is 1.73‰, only 1.73% of which are suspicious data needing to be confirmed by experts. Moreover, the distribution characteristics of anomaly data are consistent with the climatic characteristics of the study region as well as measurement and maintenance modes of rain gauges. Overall, NMQC has a strong ability to label anomaly data automatically, while identifying a lower proportion of suspicious data. It can greatly reduce manual intervention and shorten the impact time of anomaly data in the operational work.

Funder

Yangtze River Basin Meteorological Open Fund Project

Key Laboratory of South China Sea Meteorological Disaster Prevention and Mitigation of Hainan Province Open Fund Project

China Yangtze Power Company Limited Scientific Research Project

Publisher

IWA Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3