Abstract
The pre-drainage of coalbed methane through boreholes in the bottom drainage roadway (BDR) is the key measure to prevent and control coal and gas outburst. Different arrangement layers in the BDR will make a difference in the range of drilling angle and affect the gas extraction effect. In this paper, the mathematical model of the rock loose circle area around elliptical drilling was constructed. Meanwhile, the fluid–solid coupling model is constructed by using COMSOL software, the dynamic response of coal permeability and volumetric strain with gas pressure and the Klinkenberg effect of gas are considered, and the effect of the change of the elliptical drilling angle on the pressure relief effect of the coal seam is studied. The results showed that the distance between the layer in the BDR and the pre-drainage coal seam would decrease, and the effective extraction length at the same point of gas extraction in the coal seam increases. The area of the rock loose circle and permeability around the drilling decayed negatively and exponentially with the increase in drilling angle. As the drilling angle decreased, the stress in the major axis of the ellipse at the drilling cross-section increased, so the drilling was prone to collapse, and the gas extraction was hindered. Finally, an optimal method of determining the layer in the BDR under the coupling effect of multiple factors was established by combining the measured ground stress. Through field measurement, the drilling extraction rate of the optimized scheme is 60% higher than that of the original scheme.
Funder
National Natural Science Foundation of Shanxi Province, China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献