Mechanical criterion for coal and gas outburst: a perspective from multiphysics coupling

Author:

Liu Ting,Lin Baiquan,Fu Xuehai,Liu Ang

Abstract

AbstractAlthough a series of hypotheses have been proposed, the mechanism underlying coal and gas outburst remains unclear. Given the low-index outbursts encountered in mining practice, we attempt to explore this mechanism using a multiphysics coupling model considering the effects of coal strength and gas mass transfer on failure. Based on force analysis of coal ahead of the heading face, a risk identification index Cm and a critical criterion (Cm ≥ 1) of coal instability are proposed. According to this criterion, the driving force of an outburst consists of stress and gas pressure gradients along the heading direction of the roadway, whereas resistance depends on the shear and tensile strengths of the coal. The results show that outburst risk decreases slightly, followed by a rapid increase, with increasing vertical stress, whereas it decreases with increasing coal strength and increases with gas pressure monotonically. Using the response surface method, a coupled multi-factor model for the risk identification index is developed. The results indicate strong interactions among the controlling factors. Moreover, the critical values of the factors corresponding to outburst change depending on the environment of the coal seams, rather than being constants. As the buried depth of a coal seam increases, the critical values of gas pressure and coal strength decrease slightly, followed by a rapid increase. According to its controlling factors, outburst can be divided into stress-dominated, coal-strength-dominated, gas-pressure-dominated, and multi-factor compound types. Based on this classification, a classified control method is proposed to enable more targeted outburst prevention.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3