Efficient 3D Object Recognition from Cluttered Point Cloud

Author:

Li Wei,Cheng Hongtai,Zhang Xiaohua

Abstract

Recognizing 3D objects and estimating their postures in a complex scene is a challenging task. Sample Consensus Initial Alignment (SAC-IA) is a commonly used point cloud-based method to achieve such a goal. However, its efficiency is low, and it cannot be applied in real-time applications. This paper analyzes the most time-consuming part of the SAC-IA algorithm: sample generation and evaluation. We propose two improvements to increase efficiency. In the initial aligning stage, instead of sampling the key points, the correspondence pairs between model and scene key points are generated in advance and chosen in each iteration, which reduces the redundant correspondence search operations; a geometric filter is proposed to prevent the invalid samples to the evaluation process, which is the most time-consuming operation because it requires transforming and calculating the distance between two point clouds. The introduction of the geometric filter can significantly increase the sample quality and reduce the required sample numbers. Experiments are performed on our own datasets captured by Kinect v2 Camera and on Bologna 1 dataset. The results show that the proposed method can significantly increase (10–30×) the efficiency of the original SAC-IA method without sacrificing accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A robust 3D unique descriptor for 3D object detection;Pattern Analysis and Applications;2024-09

2. Augmented‐reality‐based surgical navigation for endoscope retrograde cholangiopancreatography: A phantom study;The International Journal of Medical Robotics and Computer Assisted Surgery;2024-06

3. 3DHoNR: A 3D object recognition using an efficient and fast low-dimensional 3D descriptor for a Real-time Application;2024 IEEE International Conference on Advanced Robotics and Its Social Impacts (ARSO);2024-05-20

4. A Novel Multimodal Fusion Framework Based on Point Cloud Registration for Near-Field 3D SAR Perception;Remote Sensing;2024-03-08

5. Robotic grinding based on point cloud data: developments, applications, challenges, and key technologies;The International Journal of Advanced Manufacturing Technology;2024-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3