A Novel Multimodal Fusion Framework Based on Point Cloud Registration for Near-Field 3D SAR Perception

Author:

Zeng Tianjiao1ORCID,Zhang Wensi2,Zhan Xu2ORCID,Xu Xiaowo2ORCID,Liu Ziyang2,Wang Baoyou2,Zhang Xiaoling2

Affiliation:

1. School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

2. School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

This study introduces a pioneering multimodal fusion framework to enhance near-field 3D Synthetic Aperture Radar (SAR) imaging, crucial for applications like radar cross-section measurement and concealed object detection. Traditional near-field 3D SAR imaging struggles with issues like target–background confusion due to clutter and multipath interference, shape distortion from high sidelobes, and lack of color and texture information, all of which impede effective target recognition and scattering diagnosis. The proposed approach presents the first known application of multimodal fusion in near-field 3D SAR imaging, integrating LiDAR and optical camera data to overcome its inherent limitations. The framework comprises data preprocessing, point cloud registration, and data fusion, where registration between multi-sensor data is the core of effective integration. Recognizing the inadequacy of traditional registration methods in handling varying data formats, noise, and resolution differences, particularly between near-field 3D SAR and other sensors, this work introduces a novel three-stage registration process to effectively address these challenges. First, the approach designs a structure–intensity-constrained centroid distance detector, enabling key point extraction that reduces heterogeneity and accelerates the process. Second, a sample consensus initial alignment algorithm with SHOT features and geometric relationship constraints is proposed for enhanced coarse registration. Finally, the fine registration phase employs adaptive thresholding in the iterative closest point algorithm for precise and efficient data alignment. Both visual and quantitative analyses of measured data demonstrate the effectiveness of our method. The experimental results show significant improvements in registration accuracy and efficiency, laying the groundwork for future multimodal fusion advancements in near-field 3D SAR imaging.

Funder

National Natural Science Foundation of China

the Starting Foundation of University of Electronic Science and Technology of China

Publisher

MDPI AG

Reference51 articles.

1. A Fast Radial Scanned Near-Field 3-D SAR Imaging System and the Reconstruction Method;Li;IEEE Trans. Geosci. Remote Sens.,2015

2. Xu, X., Zhang, X., and Zhang, T. (2022). Lite-YOLOv5: A Lightweight Deep Learning Detector for On-Board Ship Detection in Large-Scene Sentinel-1 SAR Images. Remote Sens., 14.

3. Xu, X., Zhang, X., Shao, Z., Shi, J., Wei, S., Zhang, T., and Zeng, T. (2022). A Group-Wise Feature Enhancement-and-Fusion Network with Dual-Polarization Feature Enrichment for SAR Ship Detection. Remote Sens., 14.

4. Shadow-Background-Noise 3D Spatial Decomposition Using Sparse Low-Rank Gaussian Properties for Video-SAR Moving Target Shadow Enhancement;Xu;IEEE Geosci. Remote Sens. Lett.,2022

5. A Target-Oriented Bayesian Compressive Sensing Imaging Method with Region-Adaptive Extractor for mmW Automotive Radar;Xu;IEEE Trans. Geosci. Remote Sens.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3