Optimization Strategies for Dockless Bike Sharing Systems via two Algorithms of Closed Queuing Networks

Author:

Fan Rui-NaORCID,Ma Fan-QiORCID,Li Quan-Lin

Abstract

The dockless bike sharing system (DBSS) has been globally adopted as a sustainable transportation system. Due to the robustness and tractability of the closed queuing network (CQN), it is a well-behaved method to model DBSSs. In this paper, we view DBSSs as CQNs and use the mean value analysis (MVA) algorithm to calculate a small size DBSS and the flow equivalent server (FES) algorithm to calculate the larger size DBSS. This is the first time that the FES algorithm is used to study the DBSS, by which the CQN can be divided into different subnetworks. A parking region and its downlink roads are viewed as a subnetwork, so the computation of CQN is reduced greatly. Based on the computation results of the two algorithms, we propose two optimization functions for determining the optimal fleet size and repositioning flow, respectively. At last, we provide numerical experiments to verify the two algorithms and illustrate the optimal fleet size and repositioning flow. This computation framework can also be used to analyze other on-demand transportation networks.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference34 articles.

1. The Bike-Sharing World Maphttps://www.google.com/maps/d/viewer?mid=1UxYw9YrwT_R3SGsktJU3D-2GpMU&ll=0%2C0&z=1

2. Critical Factors to Achieve Dockless Bike-Sharing Sustainability in China: A Stakeholder-Oriented Network Perspective

3. The News about Bike Shairng in Chinahttps://baijiahao.baidu.com/s?id=1627399223714557603wfr=spiderfor=pc

4. Optimal control of a distributed service system with moving resources: Application to the fleet sizing and allocation problem

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3