Abstract
The dockless bike sharing system (DBSS) has been globally adopted as a sustainable transportation system. Due to the robustness and tractability of the closed queuing network (CQN), it is a well-behaved method to model DBSSs. In this paper, we view DBSSs as CQNs and use the mean value analysis (MVA) algorithm to calculate a small size DBSS and the flow equivalent server (FES) algorithm to calculate the larger size DBSS. This is the first time that the FES algorithm is used to study the DBSS, by which the CQN can be divided into different subnetworks. A parking region and its downlink roads are viewed as a subnetwork, so the computation of CQN is reduced greatly. Based on the computation results of the two algorithms, we propose two optimization functions for determining the optimal fleet size and repositioning flow, respectively. At last, we provide numerical experiments to verify the two algorithms and illustrate the optimal fleet size and repositioning flow. This computation framework can also be used to analyze other on-demand transportation networks.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献