Optimization of shared bike paths considering faulty vehicle recovery during dispatch

Author:

Shi Donghao1

Affiliation:

1. College of Mechanical Engineering, Zhejiang University of Technology , Hangzhou 310023 , Zhejiang , China

Abstract

Abstract With the rapid development of China’s social economy and the improvement of the level of urbanization, urban transportation has also been greatly developed. With the booming development of the internet and the sharing economy industry, shared bicycles have emerged as the times requirement. Shared bicycles are a new type of urban transportation without piles. As a green way of travel, shared bicycles have the advantages of convenience, fashion, green, and environmental protection. However, many problems have also arisen in the use of shared bicycles, such as man-made damage to the vehicle, the expiration of the service life of the vehicle, etc. These problems are unavoidable, and the occurrence of these failure problems will also cause serious harm to the use of shared bicycles. This article aims to study the path optimization of shared bicycles considering the recovery of faulty vehicles during dispatching. Based on the K-means spatial data clustering algorithm, a path optimization experiment of shared bicycle recycling scheduling considering the recycling of faulty vehicles is carried out. The experiment concluded that the shared bicycle recycling scheduling path based on K-means clustering planning significantly reduces the total time spent and the total cost of performing recycling scheduling tasks. Among them, the unit price of recycling and dispatching of each faulty shared bicycle has dropped by 4.1 yuan compared with the market unit price. The conclusion shows that the shared bicycle recycling scheduling path considering faulty vehicle recycling based on K-means clustering algorithm has been greatly optimized.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3