Spatial-Temporal Characteristics of Ecosystem Service Values of Watershed and Ecological Compensation Scheme Considering Its Realization in Spatial Planning

Author:

Su Ziyong,Wang Zhanqi,Zhang Liguo

Abstract

A reasonable ecological compensation scheme for watersheds is beneficial for water resource protection and ecological sustainability. The existing literature has few watershed ecological compensation (WEC) schemes based on long-term observation and large spatial scale analysis of ecosystem service value (ESV) and considering its realization in spatial planning. Therefore, in order to establish a WEC scheme and integrate it into spatial planning, we take the Middle Route of South-to-North Water Diversion Project (MRSNWDP), a water resource area protecting the water resources at a huge local economic development cost, as a case study, and calculate the change trend and change range of the watershed’s total ESV from 1990 to 2015, thus, forming the WEC scheme. The results show the total ESV in the study area shows a slight downward fluctuation trend from 1990 to 2015, decreasing by 3310.70. The total ESV in most types of ecosystem service (ES) functions is relatively reduced except for the increase in functions of water conservation, waste treatment, and entertainment and culture. In addition, the change rate of total ESV has been in a high-value agglomeration, and the ES capabilities have been increasing since 2000, while the growth trend of the ES capabilities has been weak, and the high-value agglomeration has been expanding from the core area of Danjiangkou reservoir to the upstream and surrounding areas since 2005. We formulate a WEC scheme according to the partition idea of spatial planning that the priority compensation area accounts for 25.34% of the total study area, and the second priority compensation area, the general compensation area, and the potential compensation area account for 25.34%, 47.48%, and 12.80%, respectively.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3