Ackerman Unmanned Mobile Vehicle Based on Heterogeneous Sensor in Navigation Control Application

Author:

Shih Chi-Huang1,Lin Cheng-Jian1ORCID,Jhang Jyun-Yu2ORCID

Affiliation:

1. Department of Computer Science and Information Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan

2. Department of Computer Science and Information Engineering, National Taichung University of Science and Technology, Taichung 404, Taiwan

Abstract

With the advancement of science and technology, the development and application of unmanned mobile vehicles (UMVs) have emerged as topics of crucial concern in the global industry. The development goals and directions of UMVs vary according to their industrial uses, which include navigation, autonomous driving, and environmental recognition; these uses have become the priority development goals of researchers in various fields. UMVs employ sensors to collect environmental data for environmental analysis and path planning. However, the analysis function of a single sensor is generally affected by natural environmental factors, resulting in poor identification results. Therefore, this study introduces fusion technology that employs heterogeneous sensors in the Ackerman UMV, leveraging the advantages of each sensor to enhance accuracy and stability in environmental detection and identification. This study proposes a fusion technique involving heterogeneous imaging and LiDAR (laser imaging, detection, and ranging) sensors in an Ackerman UMV. A camera is used to obtain real-time images, and YOLOv4-tiny and simple online real-time tracking are then employed to detect the location of objects and conduct object classification and object tracking. LiDAR is simultaneously used to obtain real-time distance information of detected objects. An inertial measurement unit is used to gather odometry information to determine the position of the Ackerman UMV. Static maps are created using simultaneous localization and mapping. When the user commands the Ackerman UMV to move to the target point, the vehicle control center composed of the robot operating system activates the navigation function through the navigation control module. The Ackerman UMV can reach the destination and instantly identify obstacles and pedestrians when in motion.

Funder

Taiwan Ministry of Science and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on AMCL Algorithm Coupled with DWA Algorithm in Logistics Scenarios;2024 IEEE International Workshop on Radio Frequency and Antenna Technologies (iWRF&AT);2024-05-31

2. An Adaptive Single Image Dehazing Method Based on Multi-Feature Fusion;2024 36th Chinese Control and Decision Conference (CCDC);2024-05-25

3. The Archimede Rover: A Comparison Between Simulations and Experiments;Robotics;2023-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3