Accelerating the K-Nearest Neighbors Filtering Algorithm to Optimize the Real-Time Classification of Human Brain Tumor in Hyperspectral Images

Author:

Florimbi Giordana,Fabelo Himar,Torti Emanuele,Lazcano Raquel,Madroñal Daniel,Ortega Samuel,Salvador RubenORCID,Leporati Francesco,Danese Giovanni,Báez-Quevedo Abelardo,Callicó Gustavo,Juárez Eduardo,Sanz César,Sarmiento Roberto

Abstract

The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves very high computational requirements due to the huge amount of information captured by the sensors. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) filtering algorithm. The main goal of this study is to optimize and parallelize the KNN algorithm by exploiting the GPU technology to obtain real-time processing during brain cancer surgical procedures. This parallel version of the KNN performs the neighbor filtering of a classification map (obtained from a supervised classifier), evaluating the different classes simultaneously. The undertaken optimizations and the computational capabilities of the GPU device throw a speedup up to 66.18× when compared to a sequential implementation.

Funder

Seventh Framework Programme

Agencia Canaria de Investigación, Innovación y Sociedad de la Información

Universidad de Las Palmas de Gran Canaria

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference22 articles.

1. Hyperspectral Imaging in the Medical Field: Present and Future

2. Medical hyperspectral imaging: a review

3. Hyperspectral Imaging: Techniques for Spectral Detection and Classification;Chang,2003

4. Hyperspectral imaging: A new modality in surgery;Akbari,2009

5. A hyperspectral imaging system for in vivo optical diagnostics;Vo-Dinh;Eng. Med. Biol. Mag. IEEE,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3