Hyperspectral imaging benchmark based on machine learning for intraoperative brain tumour detection

Author:

Leon RaquelORCID,Fabelo HimarORCID,Ortega Samuel,Cruz-Guerrero Ines A.ORCID,Campos-Delgado Daniel UlisesORCID,Szolna Adam,Piñeiro Juan F.,Espino Carlos,O’Shanahan Aruma J.,Hernandez Maria,Carrera David,Bisshopp Sara,Sosa Coralia,Balea-Fernandez Francisco J.,Morera Jesus,Clavo BernardinoORCID,Callico Gustavo M.ORCID

Abstract

AbstractBrain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database, consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support tool during neurosurgical workflows.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Oncology

Reference77 articles.

1. International Association of Cancer Registries (IACR). Cancer Today. GLOBOCAN 2020. https://gco.iarc.fr/today/home (2021).

2. International Association of Cancer Registries (IACR). Cancer Tomorrow. GLOBOCAN 2020. https://gco.iarc.fr/tomorrow/en (2021).

3. Patel, A. P. et al. Global, regional, and national burden of brain and other CNS cancer, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 376–393 (2019).

4. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. Ca. Cancer J. Clin. 71, 7–33 (2021).

5. National Institute for Health and Care Excellence. Brain Tumours (primary) and Brain Metastases in Adults (NG99). (2018).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3