Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation

Author:

Dorosz PawełORCID,Wojcieszak PawełORCID,Malecha ZiemowitORCID

Abstract

LNG (Liquefied Natural Gas) shares in the global energy market is steadily increasing. One possible application of LNG is as a fuel for transportation. Stricter air pollution regulations and emission controls have made the natural gas a promising alternative to liquid petroleum fuels, especially in the case of heavy transport. However, in most LNG-fueled vehicles, the physical exergy of LNG is destroyed in the regasification process. This paper investigates possible LNG exergy recovery systems for transportation. The analyses focus on “cold energy” recovery systems as the enthalpy of LNG, which may be used as cooling power in air conditioning or refrigeration. Moreover, four exergy recovery systems that use LNG as a low temperature heat sink to produce electric power are analyzed. This includes single-stage and two-stage direct expansion systems, an ORC (Organic Rankine Cycle) system, and a combined system (ORC + direct expansion). The optimization of the above-mentioned LNG power cycles and exergy analyses are also discussed, with the identification of exergy loss in all components. The analyzed systems achieved exergetic efficiencies in the range of 20 % to 36 % , which corresponds to a net work in the range of 214 to 380 kJ/kg L N G .

Funder

The National Center for Research and Development, Poland

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference41 articles.

1. Exergy analysis of combined simultaneous Liquid Natural Gas vaporization and Adsorbed Natural Gas cooling

2. LNG: An eco-friendly cryogenic fuel for sustainable development

3. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe

4. A multi-criteria sustainability assessment for biodiesel and liquefied natural gas as alternative fuels in transport systems

5. Resolution MEPC.286(71)—Amendments to Marpol Annex VI (designation of the Baltic Sea and the North Sea emission control areas for NOX Tier III control and information to be included in the bunker delivery note), 2017http://rise.odessa.ua/texts/MEPC286_71e.php3

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3