Optimizing Air Separation and LNG Cold Utilization: Energy Savings, Exergy Efficiency, and System Reliability

Author:

Shingan Bhalchandra1ORCID,Pujari Murali1,Arya Adarsh Kumar2,Singh Varunpratap3

Affiliation:

1. Chemical and Petroleum Engineering Department University of Petroleum and Energy Studies, Energy Cluster Bidholi via Premanagar Dehradun Uttarakhand 248007 India

2. Department of Chemical Engineering HBTU Kanpur Uttar Pradesh 2080023 India

3. University of Petroleum and Energy Studies, Mechanical Cluster Bidholi via Premanagar Dehradun Uttarakhand 248007 India

Abstract

AbstractAir separation processes are time‐consuming and energy‐intensive. Most of the energy used in air separation unit (ASU) is used for air compression. During the air compression process, some energy is lost, which is converted into waste heat. This wasted energy is used to warm liquefied natural gas (LNG). At some point, LNG ships will dock at an LNG regasification facility. Here, LNG is converted back to gas and supplied to the distribution and transmission systems. During the regasification process, cryogenic LNG has a huge opportunity for cold energy recovery. An innovative air separation process that is integrated with the cold utilization of LNG is presented in this study along with a thorough conceptual design and analysis. The results of this study show that producing high‐purity oxygen and nitrogen, respectively, requires 0.28 kWh kg−1 and 0.06 kWh kg−1 of specific energies. Prior to integration with cold utilization of natural gas, 25 141.6 kW is needed for air compression. However, following integration, 10 554.6 kW of energy is needed, resulting in a 58.01 % energy savings. Exergy destruction as well as efficiency have been calculated for the primary components of the system. Sensitivity analysis is carried out to examine the effects of LNG streams on important parameters. In conclusion, a cryogenic ASU is integrated with an LNG‐direct expansion cycle‐organic Rankine cycle power cycle to supply the necessary power for operation and reduce extraneous power inputs. Overall, this integrated approach increases efficiency, lowers costs, benefits the environment, allows for flexibility and adaptability, and raises system dependability.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3