Abstract
We present relativistic ab initio calculations of fundamental parameters for atomic selenium, based on the Multiconfiguration Dirac-Fock method. In detail, fluorescence yields and subshell linewidths, both of K shell, as well as Kβ to Kα intensity ratio are provided, showing overall agreement with previous theoretical calculations and experimental values. Relative intensities were evaluated assuming the same ionization cross-section for the K-shell hole states, leading to a statistical distribution of these initial states. A method for estimating theoretical linewidths of X-ray lines, where the lines are composed by a multiplet of fine-structure levels that are spread in energy, is proposed. This method provides results that are closer to Kα1,2 experimental width values than the usual method, although slightly higher discrepancies occur for the Kβ1,3 lines. This indicates some inaccuracies in the calculation of Auger rates that have a higher contribution for partial linewidths of the subshells involved in the Kβ1,3 profile. Apart from this, the calculated value of Kβ to Kα intensity ratio, which is less sensitive to Auger rates issues, is in excellent agreement with recommended values.
Funder
Fundação para a Ciência e a Tecnologia
European Metrology Programme for Innovation and Research
Subject
Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献