Abstract
We describe the atomic database of the xstar spectral modeling code, summarizing the systematic upgrades carried out in the past twenty years to enable the modeling of K-lines from chemical elements with atomic number Z≤30 and recent extensions to handle high-density plasmas. Such plasma environments are found, for instance, in the inner region of accretion disks round compact objects (neutron stars and black holes), which emit rich information about the system’s physical properties. Our intention is to offer a reliable modeling tool to take advantage of the outstanding spectral capabilities of the new generation of X-ray space telescopes (e.g., xrism and athena) to be launched in the coming years. Data curatorial aspects are discussed and an updated list of reference sources is compiled to improve the database provenance metadata. Two xstar spin-offs—the ISMabs absorption model and the uaDB database—are also described.
Funder
NASA Astrophysics Research and 496 Analysis Program
Subject
Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献