Deep Network Architectures as Feature Extractors for Multi-Label Classification of Remote Sensing Images

Author:

Stoimchev MarjanORCID,Kocev DragiORCID,Džeroski SašoORCID

Abstract

Data in the form of images are now generated at an unprecedented rate. A case in point is remote sensing images (RSI), now available in large-scale RSI archives, which have attracted a considerable amount of research on image classification within the remote sensing community. The basic task of single-target multi-class image classification considers the case where each image is assigned exactly one label from a predefined finite set of class labels. Recently, however, image annotations have become increasingly complex, with images labeled with several labels (instead of just one). In other words, the goal is to assign multiple semantic categories to an image, based on its high-level context. The corresponding machine learning tasks is called multi-label classification (MLC). The classification of RSI is currently predominantly addressed by deep neural network (DNN) approaches, especially convolutional neural networks (CNNs), which can be utilized as feature extractors as well as end-to-end methods. After only considering single-target classification for a long period, DNNs have recently emerged that address the task of MLC. On the other hand, trees and tree ensembles for MLC have a long tradition and are the best-performing class of MLC methods, but need predefined feature representations to operate on. In this work, we explore different strategies for model training based on the transfer learning paradigm, where we utilize different families of (pre-trained) CNN architectures, such as VGG, EfficientNet, and ResNet. The architectures are trained in an end-to-end manner and used in two different modes of operation, namely, as standalone models that directly perform the MLC task, and as feature extractors. In the latter case, the learned representations are used with tree ensemble methods for MLC, such as random forests and extremely randomized trees. We conduct an extensive experimental analysis of methods over several publicly available RSI datasets and evaluate their effectiveness in terms of standard MLC measures. Of these, ranking-based evaluation measures are most relevant, especially ranking loss. The results show that, for addressing the RSI-MLC task, it is favorable to use lightweight network architectures, such as EfficientNet-B2, which is the best performing end-to-end approach, as well as a feature extractor. Furthermore, in the datasets with a limited number of images, using traditional tree ensembles for MLC can yield better performance compared to end-to-end deep approaches.

Funder

European Space Agency

Slovenian Research Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3