Author:
Tran ,Park ,Nguyen ,Hoang
Abstract
The complexity and dynamic of the manufacturing environment are growing due to the changes of manufacturing demand from mass production to mass customization that require variable product types, small lot sizes, and a short lead-time to market. Currently, the automatic manufacturing systems are suitable for mass production. To cope with the changes of the manufacturing environment, the paper proposes the model and technologies for developing a smart cyber-physical manufacturing system (Smart-CPMS). The transformation of the actual manufacturing systems to the Smart-CPMS is considered as the next generation of manufacturing development in Industry 4.0. The Smart-CPMS has advanced characteristics inspired from biology such as self-organization, self-diagnosis, and self-healing. These characteristics ensure that the Smart-CPMS is able to adapt with continuously changing manufacturing requirements. The model of Smart-CPMS is inherited from the organization of living systems in biology and nature. Consequently, in the Smart-CPMS, each resource on the shop floor such as machines, robots, transporters, and so on, is an autonomous entity, namely a cyber-physical system (CPS) which is equipped with cognitive capabilities such as perception, reasoning, learning, and cooperation. The Smart-CPMS adapts to the changes of manufacturing environment by the interaction among CPSs without external intervention. The CPS implementation uses the cognitive agent technology. Internet of things (IoT) with wireless networks, radio frequency identification (RFID), and sensor networks are used as information and communication technology (ICT) infrastructure for carrying out the Smart-CPMS.
Funder
National Foundation for Science and Technology Development
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献