A Novel Virtual Sensor for Estimating Robot Joint Total Friction Based on Total Momentum

Author:

Xu ,Fan ,Fang ,Wang ,Zhu ,Zhao

Abstract

Robot joint friction is an important and complicated issue in improving robot control performance. In this paper, a virtual sensor based on the total generalized momentum concept is proposed to estimate the total friction torque, including both the motor-side and link-side friction, of robot joints without joint torque sensors. The proposed algorithm only requires a robot joint dynamics model and not a complex friction model dependent on factors such as time and velocity. By compensating for the estimated friction torque with a robot joint controller, the trajectory tracking performance of the controller, especially the velocity tracking performance, can be improved. To verify the effectiveness of the developed algorithm, 2-DOF planar manipulator simulations and single-joint system experiments are conducted. The simulation and experimental results show that the designed virtual sensor can effectively estimate the total joint friction disturbance and that the controller trajectory tracking performance is improved after observed friction compensation. However, the position tracking performance improvement of the controller is less than that for the velocity tracking performance improvement during the experiments. In addition, the velocity step response ability and velocity tracking performance of the controller are improved more at low velocities than that at high velocities in the experiments. The proposed algorithm has engineering and theoretical significance for estimating robot joint friction and improving the performance of robot joint controllers.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Robotic Friction Stir Welding Path Planning with Deflection Compensation Using B-Splines;Kolegain,2019

2. Nonlinear friction modelling and compensation control of hysteresis phenomena for a pair of tendon-sheath actuated surgical robots

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3