Spectroscopic Characterization of the Binding and Release of Hydrophilic, Hydrophobic and Amphiphilic Molecules from Ovalbumin Supramolecular Hydrogels

Author:

Vesković AnaORCID,Bajuk-Bogdanović DanicaORCID,Arion Vladimir B.ORCID,Popović Bijelić AnaORCID

Abstract

Protein-based hydrogels have attracted growing attention for pharmaceutical and biomedical applications. Ovalbumin (OVA), the hen egg white albumin, possessing good foaming and gelling properties and being widely used in the food industry, has recently been indicated as a potential pharmaceutical vehicle. In this study, the binding and release properties of pure OVA hydrogels were investigated by electron paramagnetic resonance (EPR) spin labeling. The comparative analysis between OVA and serum albumin (SA) hydrogels revealed the same release kinetics of hydrophilic 3-carbamoyl-proxyl and 3-carboxy-proxyl, suggesting the diffusion-dominated release of small probes from both hydrogel types. The results obtained with the amphiphilic 16-doxylstearate (16-DS) indicate that OVA, unlike SAs, does not possess a specific fatty acid binding site. However, the OVA hydrogels were able to accommodate a two-fold excess of 16-DS, resulting from protein thermally induced conformational changes, as confirmed by Raman spectroscopy. Similarly, the hydrophobic modified paullone ligand HL, which was initially free in the OVA solution, was bound in the hydrogel. The hydrogels were found to retain a significant amount of 16-DS and HL after 7-day dialysis in physiological saline. The observed facilitated binding of amphiphilic/hydrophobic molecules in OVA hydrogels compared to the solution, and their sustained release, demonstrate the applicability of OVA hydrogels in pharmaceutics.

Funder

Science Fund of the Republic of Serbia

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3