Multiplexed Human Gene Expression Analysis Reveals a Central Role of the TLR/mTOR/PPARγ and NFkB Axes in Burn and Inhalation Injury-Induced Changes in Systemic Immunometabolism and Long-Term Patient Outcomes

Author:

Mahung Cressida,Wallet Shannon M.,Jacobs Jordan E.ORCID,Zhou Laura Y.,Zhou Haibo,Cairns Bruce A.,Maile RobertORCID

Abstract

Burn patients are subject to significant acute immune and metabolic dysfunction. Concomitant inhalation injury increases mortality by 20%. In order to identify specific immune and metabolic signaling pathways in burn (B), inhalation (I), and combined burn-inhalation (BI) injury, unbiased nanoString multiplex technology was used to investigate gene expression within peripheral blood mononuclear cells (PBMCs) from burn patients, with and without inhalation injury. PBMCs were collected from 36 injured patients and 12 healthy, non-burned controls within 72 h of injury. mRNA was isolated and hybridized with probes for 1342 genes related to general immunology and cellular metabolism. From these specific gene patterns, specific cellular perturbations and signaling pathways were inferred using robust bioinformatic tools. In both B and BI injuries, elements of mTOR, PPARγ, TLR, and NF-kB signaling pathways were significantly altered within PBMC after injury compared to PBMC from the healthy control group. Using linear regression modeling, (1) DEPTOR, LAMTOR5, PPARγ, and RPTOR significantly correlated with patient BMI; (2) RPTOR significantly correlated with patient length of stay, and (3) MRC1 significantly correlated with the eventual risk of patient mortality. Identification of mediators of this immunometabolic response that can act as biomarkers and/or therapeutic targets could ultimately aid the management of burn patients.

Funder

National Institute of General Medical Sciences

National Institute of Environmental Health Sciences

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3