Innate Immune System Response to Burn Damage—Focus on Cytokine Alteration

Author:

Sierawska OlgaORCID,Małkowska PaulinaORCID,Taskin Cansel,Hrynkiewicz RafałORCID,Mertowska PaulinaORCID,Grywalska EwelinaORCID,Korzeniowski Tomasz,Torres Kamil,Surowiecka AgnieszkaORCID,Niedźwiedzka-Rystwej PaulinaORCID,Strużyna Jerzy

Abstract

In the literature, burns are understood as traumatic events accompanied by increased morbidity and mortality among affected patients. Their characteristic feature is the formation of swelling and redness at the site of the burn, which indicates the development of inflammation. This reaction is not only important in the healing process of wounds but is also responsible for stimulating the patient’s innate immune system. As a result of the loss of the protective ability of the epidermis, microbes which include bacteria, fungi, and viruses have easier access to the system, which can result in infections. However, the patient is still able to overcome the infections that occur through a cascade of cytokines and growth factors stimulated by inflammation. Long-term inflammation also has negative consequences for the body, which may result in multi-organ failure or lead to fibrosis and scarring of the skin. The innate immune response to burns is not only immediate, but also severe and prolonged, and some people with burn shock may also experience immunosuppression accompanied by an increased susceptibility to fatal infections. This immunosuppression includes apoptosis-induced lymphopenia, decreased interleukin 2 (IL-2) secretion, neutrophil storm, impaired phagocytosis, and decreased monocyte human leukocyte antigen-DR. This is why it is important to understand how the immune system works in people with burns and during infections of wounds by microorganisms. The aim of this study was to characterize the molecular pathways of cell signaling of the immune system of people affected by burns, taking into account the role of microbial infections.

Funder

Medical University of Lublin

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference135 articles.

1. Immunological approaches and therapy in burns (Review)

2. Aging and the Pathogenic Response to Burn;Rani;Aging Dis,2012

3. Pathophysiology and types of burns

4. Infection in Burns

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3