Iron Source and Medium pH Affect Nutrient Uptake and Pigment Content in Petunia hybrida ‘Madness Red’ Cultured In Vitro

Author:

Guo Ge,Xiao Jie,Jeong Byoung RyongORCID

Abstract

Deficiency or excess of iron (Fe) and improper medium pH will inhibit the growth and development of plants, reduce the transfer and utilization of energy from the root to the leaf, and affect the utilization efficiency of inorganic nutrients. The most common symptom of Fe deficiency in plants is chlorosis of the young leaves. In this study, the effects of the iron source, in combination with the medium pH, on plant growth and development, plant pigment synthesis, and nutrient uptake in a model plant Petunia hybrida cultured in vitro were investigated. Iron sulfate (FeSO4·7H2O) or iron chelated with ethylenediaminetetraacetic acid (Fe-EDTA) were supplemented to the MNS (a multipurpose nutrient solution) medium at a concentration of 2.78 mg·L−1 Fe, and the treatment without any Fe was used as the control. The pH of the agar-solidified medium was adjusted to either 4.70, 5.70, or 6.70 before autoclaving. The experiment was carried out in an environmentally controlled culture room with a temperature of 24 °C with 100 µmol·m−2·s−1 photosynthetic photon flux density (PPFD) supplied by white light emitting diodes (LEDs) during a photoperiod of 16 h a day, 18 °C for 8 h a day in the dark, and 70% relative humidity. Regardless of the Fe source including the control, the greatest number of leaves was observed at pH 4.70. However, the greatest lengths of the leaf and root were observed in the treatment with Fe-EDTA combined with pH 5.70. The contents of the chlorophyll, carotenoid, and anthocyanin decreased with increasing medium pH, and contents of these plant pigments were positively correlated with the leaf color. The highest soluble protein content and activities of APX and CAT were observed in the Fe-EDTA under pH 5.70. However, the GPX activity was the highest in the control under pH 4.70. In addition, the highest contents of ammonium (NH4+) and nitrate (NO3−) were measured in the FeSO4-4.7 and EDTA-5.7, respectively. More than that, the treatment of Fe-EDTA combined with pH 5.70 (EDTA-5.7) enhanced nutrient absorption, as proven by the highest tissue contents of P, K, Ca, Mg, Fe, and Mn. The genes’ ferric reduction oxidase 1 and 8 (PhFRO1 and PhFRO8), iron-regulated transporter 1 (PhIRT1), nitrate transporter 2.5 (PhNRT2.5), and deoxyhypusine synthase (PhDHS) were expressed at the highest levels in this treatment as well. In the treatment of EDTA-5.7, the reduction and transport of chelated iron in P. hybrida leaves were enhanced, which also affected the transport of nitrate and catalyzed chlorophyll level in leaves. In conclusion, when the medium pH was adjusted to 5.70, supplementation of chelated Fe-EDTA was more conducive to promoting the growth and development of, and absorption of mineral nutrients by, the plant and the expression of related genes in the leaves.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3