Abstract
Meibomian gland dysfunction is one of the main causes of dry eye disease and has limited therapeutic options. In this study, we investigated the biological function of the beta 2-adrenergic receptor (ADRB2)/protein kinase A (PKA) pathway in lipid synthesis and its underlying mechanisms in human meibomian gland epithelial cells (HMGECs). HMGECs were cultured in differentiation media with or without forskolin (an activator of adenylate cyclase), salbutamol (an ADRB2 agonist), or timolol (an ADRB2 antagonist) for up to 4 days. The phosphorylation of the cAMP-response element-binding protein (CREB) and the expression of peroxisome proliferator activator receptor (PPAR)γ and sterol regulatory element-binding protein (SREBP)-1 were measured by immunoblotting and quantitative PCR. Lipid synthesis was examined by LipidTOX immunostaining, AdipoRed assay, and Oil Red O staining. PKA pathway activation enhanced PPARγ expression and lipid synthesis in differentiated HMGECs. When treated with agonists of ADBR2 (upstream of the PKA signaling system), PPARγ expression and lipid synthesis were enhanced in HMGECs. The ADRB2 antagonist timolol showed the opposite effect. The activation of the ADRB2/PKA signaling pathway enhances lipid synthesis in HMGECs. These results provide a potential mechanism and therapeutic target for meibomian gland dysfunction, particularly in cases induced by beta-blocker glaucoma drugs.
Funder
Yonsei University College of Medicine
National Research Foundation of Korea
Korean Fund for Regenerative Medicine
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献