Affiliation:
1. College of Fisheries, Southwest University, Chongqing 400715, China
2. Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
3. School of Life Science, Nantong University, Nantong 226019, China
Abstract
Oligotrophic marine environments are ecological funnels in marine ecosystems and are essential for maintaining the health and balance of the entire marine ecosystem. Bacterial communities are one of the most important biological populations, which can survive in low-nutrient environments and perform a variety of important ecological functions, such as decomposing and absorbing organic waste in the ocean and converting nitrogen from the atmosphere into a usable nitrogen source, thus maintaining the health of marine ecosystems. The bacterioplankton community composition and potential function were analyzed using 16S rRNA gene amplicon sequencing in oligotrophic coral reef sea areas. The diversity of the bacterial community exhibited significant differences between the four studied regions. Proteobacteria (38.58–62.79%) were the most abundant in all sampling sites, followed by Cyanobacteria (15.41–37.28%), Bacteroidota (2.39–6.67%), and Actinobacteriota (0.45–1.83%). Although bacterioplankton communities presented no difference between surface and bottom water regarding community richness and α-diversity, the bacterial community composition presented significant differences between surface and bottom water regarding β-diversity. Alteromonadales, Rhodospirllales, and Chloroplast were identified as the significantly different communities between the surface and bottom (Q value < 0.01). Bacterial community distribution in different regions was mainly affected by pH, dissolved oxygen, and nutrients. Nitrite ammonification, chitinolysis, predatory or exoparasitic, chloroplasts, chemoheterotrophy, aerobic chemoheterotrophy, phototrophic, compound degradation (mostly nutrients and pollutants), nitrogen cycle, fermentation, and intracellular parasitism were the dominant functions in the four regions.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献