Experimental Investigation on the Influence of Water on Rockburst in Rock-like Material with Voids and Multiple Fractures

Author:

Liu Guokun1,Li Xiaohua1,Peng Zhili2,Chen Wei13ORCID

Affiliation:

1. School of Building Engineering, Hunan Institute of Engineering, Xiangtan 411104, China

2. School of Resource, Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China

3. Innovation Institute of Advanced Functional Materials, Hunan Institute of Engineering, Xiangtan 411104, China

Abstract

To investigate the influence of water content on the rockburst phenomena in tunnels with horizontal joints, experiments were conducted on simulated rock specimens exhibiting five distinct levels of water absorption. Real-time monitoring of the entire blasting process was facilitated through a high-speed camera system, while the microscopic structure of the rockburst debris was analyzed using scanning electron microscopy (SEM) and a particle size analyzer. The experimental findings revealed that under varying degrees of water absorption, the specimens experienced three stages: debris ejection; rockburst; and debris spalling. As water content increased gradually, the intensity of rockburst in the specimens was mitigated. This was substantiated by a decline in peak stress intensity, a decrease in elastic modulus, delayed manifestation of pre-peak stress drop, enhanced amplitude, diminished elastic potential energy, and augmented dissipation energy, resulting in an expanded angle of rockburst debris ejection. With increasing water content, the bond strength between micro-particles was attenuated, resulting in the disintegration of the bonding material. Deformation failure was defined by the expansion of minuscule pores, gradual propagation of micro-cracks, augmentation of fluffy fine particles, exacerbation of structural surface damage akin to a honeycomb structure, diminishment of particle diameter, and a notable increase in quantity. Furthermore, the augmentation of secondary cracks and shear cracks, coupled with the enlargement of spalling areas, signified the escalation of deformation failure. Simultaneously, the total mass of rockburst debris gradually diminished, accompanied by a corresponding decrease in the proportion of micro and fine particles within the debris.

Funder

Scientific Research Foundation of Hunan Provincial Education Department

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3