Experimental Study and Analytical Modeling on Properties of Freeze–Thaw Durability of Coal Gangue Pervious Concrete

Author:

Wang Yujing12,Xia Junwu12ORCID,Li Pengxu3,Yu Linli1,Yang Han1,Chen Yidong3ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. Jiangsu Collaborative Innovation Center of Building Energy-Saving and Construction Technology, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, China

3. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

To assess the freeze–thaw (F-T) durability of coal gangue pervious concrete (CGPC) in different F-T cycle media (water, 3.5 wt% NaCl solution), experimental studies on 36 groups of cube specimens and 6 groups of prismatic specimens were carried out, with designed porosity, F-T cycling media, and F-T failure times as variables. The changes in apparent morphology, mass, compressive behavior, relative dynamic elastic modulus, and permeability coefficient have been analyzed in detail. To predict the compressive strength after F-T cycles, a GM (1,1) model based on the grey system theory was developed and further improved into a more accurate grey residual–Markov model. The results reported that the cement slurry and coal gangue aggregates (CGAs) on the specimen surface continued to fall off as F-T cycles increased, and, finally, the weak point was fractured. Meanwhile, the decrease in compressive behavior and relative dynamic elastic modulus was gentle in the early phase of F-T cycles, and they gradually became faster in the later stage, showing a parabolic downward trend. The permeability coefficient increased gradually. When F-T failure occurred, specimen mass dropped precipitously. The F-T failure of CGPC was more likely to occur in 3.5 wt% NaCl solution, and the F-T failure times of samples were 25 times earlier than that of water. This study lays the foundation for an engineering application and provides a basis for the large-scale utilization of CGPC.

Funder

National Natural Science Foundation of China

Jiangsu Collaborative Innovation Center for Building Energy Saving and Construction Technology

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3