Microstructure Evolution of TB18 Alloy after Thermal Treatment and the Effect of Recrystallization Texture on Mechanical Properties

Author:

Xiang Wei12,Li Qineng1,Zhang Feng1,Fan Yuan1,Yuan Wuhua1ORCID

Affiliation:

1. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

2. China National Erzhong Group Deyang Wanhang Die Forging Co., Ltd., Deyang 618013, China

Abstract

In industrial production, the deformation inhomogeneity after metal forging affects the mechanical properties of various parts of the forgings. The question of whether the organization and mechanical properties of β-titanium alloy can be improved by controlling the amount of forging deformation needs to be answered. Therefore, in this paper, a new sub-stable β-Ti alloy TB 18 (Ti-5.3Cr-4.9Mo4.9V-4.3Al-0.9Nb-0.3Fe) was subjected to three different levels of deformation, as well as solid solution-aging treatments, and the variation rules of microstructure and mechanical properties were investigated. During the solid solution process, the texture evolution pattern of the TB18 alloy at low deformation (20–40%) is mainly rotational cubic texture deviated into α-fiber texture; at high deformation (60%), the main components of the deformed texture are α-fiber texture with a specific orientation of (114)<113-3>. After subsequent static recrystallization, the α-fiber texture is deviated to an α*-fiber texture, while the specific orientation (114)<113-3> can still be inherited as a major component of the recrystallized texture. The plasticity of the alloy in the normal direction (ND) after the solid solution is influenced by the existence of the <110>//ND texture, and the plasticity of the alloy in the ND direction after aging is determined by a combination of the volume fraction of the <110>//ND texture in the matrix phase and the volume fraction of [112-0]α//ND in the α phase. The results show that it is feasible to change the characteristics of the recrystallization texture of TB18 by controlling the deformation level of hot forging, thus realizing the modulation of the mechanical properties.

Funder

Department of Science and Technology of Sichuan Province

Publisher

MDPI AG

Reference38 articles.

1. Lütjering, G., and Williams, J.C. (2007). Titanium, Springer. [3rd ed.].

2. Thermomechanical processing of beta titanium alloys—An overview;Weiss;Mater. Sci. Eng. A,1998

3. Aerospace applications of beta titanium alloys;Boyer;JOM,1994

4. An overview on the use of titanium in the aerospace industry;Boyer;Mater. Sci. Eng. A,1996

5. High-purity titanium, zirconium, and hafnium in nuclearpower;Kotsar;At. Energy,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3