Experimental Study on Durability and Bond Properties of GFRP Resin Bolts

Author:

Lin Mingan1,Zhang Fuming2,Wang Wei3ORCID

Affiliation:

1. School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China

2. Institute of Defense Engineering, Academy of Military Sciences (AMS), People’s Liberation Army (PLA), Beijing 100036, China

3. Key Laboratory of Impact and Safety Engineering, Ningbo University, Ministry of Education, Ningbo 315211, China

Abstract

Glass fiber-reinforced polymer (GFRP) anchor bolts are a new type of high-performance nonmetallic anchor with significantly higher tensile strength, a lighter weight, better corrosion resistance, and a lower cost than steel bars. Therefore, exploring the durability and bonding performance of GFRP anchor systems is of great importance for the structural design of protective engineering, especially in coastal environments. However, insufficient research has been conducted on the durability of GFRP resin bolts in seawater conditions, with no universal standard on the pullout testing of GFRP bolts. To study the durability and bonding performance of GFRP resin bolts, durability experiments were conducted in this work using artificial seawater, and the pullout tests were conducted using a large-scale concrete platform with different compressive strengths (21.2, 40.8, and 61.3 MPa). The results of the durability experiments indicated that the strength variations of the GFRP rods and epoxy resin materials in artificial seawater environments were less than 5%. Subsequently, indoor pullout tests using steel tubes filled with epoxy resin were conducted, and the test results indicated a critical anchor length value. Pullout tests of the GFRP resin bolts embedded in large-scale concrete blocks were also conducted with different strengths. According to the test results, all GFRP resin bolts embedded in the three concrete blocks with different compressive strengths exhibited rod fracture failure. The failure mode was not controlled via the compressive strength of the concrete blocks due to the high bonding strength between the resin and the rod, as well as between the resin and the concrete. Therefore, this GFRP resin anchor system could fully utilize the tensile strength of GFRP rods. This research offers significant practical value in verifying the safety and reliability of GFRP resin bolts in corrosive marine service environments, and it contributes to the application and development of GFRP materials in the engineering field, serving as a valuable reference for the structural design and further study of GFRP bolts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3