Heracles: A Context-Based Multisensor Sensor Data Fusion Algorithm for the Internet of Things

Author:

Delicato Flávia C.ORCID,Vandelli Tayssa,Bonicea Mario,Farias Claudio M. de

Abstract

In the Internet of Things (IoT), extending the average battery duration of devices is of paramount importance, since it promotes uptime without intervention in the environment, which can be undesirable or costly. In the IoT, the system’s functionalities are distributed among devices that (i) collect, (ii) transmit and (iii) apply algorithms to process and analyze data. A widely adopted technique for increasing the lifetime of an IoT system is using data fusion on the devices that process and analyze data. There are already several works proposing data fusion algorithms for the context of wireless sensor networks and IoT. However, most of them consider that application requirements (such as the data sampling rate and the data range of the events of interest) are previously known, and the solutions are tailored for a single target application. In the context of a smart city, we envision that the IoT will provide a sensing and communication infrastructure to be shared by multiple applications, that will make use of this infrastructure in an opportunistic and dynamic way, with no previous knowledge about its requirements. In this work, we present Heracles, a new data fusion algorithm tailored to meet the demands of the IoT for smart cities. Heracles considers the context of the application, adapting to the features of the dataset to perform the data analysis. Heracles aims at minimizing data transmission to save energy while generating value-added information, which will serve as input for decision-making processes. Results of the performed evaluation show that Heracles is feasible, enhances the performance of decision methods and extends the system lifetime.

Publisher

MDPI AG

Subject

Information Systems

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3