Simulation of the Energy Performance of a Building with Green Roofs and Green Walls in a Tropical Climate

Author:

Pragati Saranathan1,Shanthi Priya Radhakrishnan1,Pradeepa Chandramouli1,Senthil Ramalingam2ORCID

Affiliation:

1. School of Architecture and Interior Design, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India

2. Department of Mechanical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India

Abstract

Global temperatures have continued to rise for decades, partly due to human-caused greenhouse gas emissions and subsequent urban heat island (UHI) effects. This current research examines the benefits of urban greenery by studying the impact of green roofs and walls of a building on thermal behavior and heat transfer in a warm and humid climate. This simulation study discusses the importance of greening systems in improving thermal comfort and minimizing the causes of UHI by assessing an integrated green building design. Using the simulation software DesignBuilder, the significance of greening systems, green roofs, and walls in enhancing thermal comfort and reducing the factors that contribute to UHI is investigated. The simulation results are based on the building’s energy usage in hot and humid regions while featuring green roofs and walls. The simulation results indicate a considerable positive impact of greening systems in improving the urban environment in hot and humid tropical climates. Air temperature, radiant temperature, humidity, and solar gain are decreased by urban greening. The total energy consumption and district cooling demand of buildings with green roofs and walls are reduced by 10.5% and 13%, respectively. The greening systems substantially improve air quality and building’s energy efficiency. Thus, the present study‘s findings can benefit urban designers and dwellers in devising strategies for establishing green spaces in congested urban environments by integrating green technologies and systems into built environments.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3