Has Urban Construction Land Achieved Low-Carbon Sustainable Development? A Case Study of North China Plain, China

Author:

Wang Qing,Xiao Yuhang

Abstract

The rapid expansion of urban construction land (UCL) provides a guarantee to support rapid economic development and meet the social needs of urban residents. However, urban construction land is also an important source of carbon dioxide emissions. Therefore, it is of great research value to investigate the relationship between UCL and carbon emissions in depth. Based on this, using panel data of 57 cities in the North China Plain from 2007 to 2018, the study found that there is a strong positive correlation between UCL and CO2 emissions. It can be seen that the expansion of UCL is an important source of CO2 emissions. On the basis of this research conclusion, first, this paper uses the Tapio decoupling model to analyze the decoupling relationship between UCL and carbon emissions in the North China Plain. Then, the spatial autocorrelation analysis was applied to explore the spatial correlation characteristics of the carbon emission intensity of UCL in cities in the North China Plain. Finally, using the GTWR model to analyze the influencing factors of the carbon emission intensity of UCL, the following conclusions were drawn. In 2007–2015, the decoupling relationship performed well, but it deteriorated significantly from 2015 to 2018; in addition, there was a significant positive spatial correlation of carbon emission intensity of UCL. Various influencing factors have a significant impact on the carbon emission intensity of UCL, for example, the urbanization rate, industrial structure, economic development level, and population density have a positive impact, and environmental regulations, foreign investment intensity, land use efficiency and greenery coverage have a negative impact. The research results of this paper provide a scientific basis for making decisions and optimizing pathways to achieve carbon emission reduction from UCL in the North China Plain, as well as certain reference values for other regions to achieve low-carbon development of UCL. This is significant for exploring the optimal solution of land and carbon emissions and building a harmonious human–land relationship.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3