An Adaptive Refinement Scheme for Depth Estimation Networks

Author:

Alizadeh Naeini Amin,Sheikholeslami Mohammad MoeinORCID,Sohn Gunho

Abstract

Deep learning has proved to be a breakthrough in depth generation. However, the generalization ability of deep networks is still limited, and they cannot maintain a satisfactory performance on some inputs. By addressing a similar problem in the segmentation field, a feature backpropagating refinement scheme (f-BRS) has been proposed to refine predictions in the inference time. f-BRS adapts an intermediate activation function to each input by using user clicks as sparse labels. Given the similarity between user clicks and sparse depth maps, this paper aims to extend the application of f-BRS to depth prediction. Our experiments show that f-BRS, fused with a depth estimation baseline, is trapped in local optima, and fails to improve the network predictions. To resolve that, we propose a double-stage adaptive refinement scheme (DARS). In the first stage, a Delaunay-based correction module significantly improves the depth generated by a baseline network. In the second stage, a particle swarm optimizer (PSO) delineates the estimation through fine-tuning f-BRS parameters—that is, scales and biases. DARS is evaluated on an outdoor benchmark, KITTI, and an indoor benchmark, NYUv2, while for both, the network is pre-trained on KITTI. The proposed scheme was effective on both datasets.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HDPV-SLAM: Hybrid Depth-Augmented Panoramic Visual SLAM for Mobile Mapping System with Tilted LiDAR and Panoramic Visual Camera;2023 IEEE 19th International Conference on Automation Science and Engineering (CASE);2023-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3