Soil Erosion, Sediment Yield, and Runoff Modeling of the Megech Watershed Using the GeoWEPP Model

Author:

Admas Mulugeta,Melesse Assefa M.ORCID,Abate Brook,Tegegne Getachew

Abstract

Modeling soil erosion, sediment yield, and runoff are crucial for managing reservoir capacity, water quality, and watershed soil productivity. However, the monitoring and modeling of soil erosion and sedimentation rates in developing countries such as Ethiopia is not well practiced; thus, the reservoir capacity is diminishing at faster rates. In this study, the soil erosion, sediment yield, and runoff in the Megech watershed, Upper Blue Nile Basin, Ethiopia were modeled using the physically-based geospatial interface, the Water Erosion Prediction Project (GeoWEPP). The GoWEPP model was calibrated and validated at the Angereb sub-watershed and simulated to representative sites to capture the spatiotemporal variability of soil erosion and sediment yield of the Megech watershed. The model parameter sensitivity analysis showed that the hydraulic conductivity (Ke) for all soil types was found to be the dominant parameter for runoff simulation, while rill erodibility (Kr), hydraulic conductivity (Ke), critical shear stress (τc), and inter rill erodibility (Ki) were found to be sensitive for sediment yield and soil loss simulation. The model calibration (2000–2002) and validation (2003–2004) results showed the capability of the GeoWEPP model; with R2 and NSE values, respectively, of 0.94 and 0.94 for calibration; and 0.75 and 0.65 for validation. In general, the results show that the sediment yield in the study watershed varied between 10.3 t/ha/year to 54.8 t/ha/year, with a weighted mean value of 28.57 t/ha/year. The GeoWEPP model resulted in higher sediment value over that of the design sediment yield in the study basin, suggesting the implementation of the best watershed management practices to reduce the rates of watershed sediment yield. Moreover, the mean soil loss rate for the Angerb sub-watershed was found to be 32.69 t/ha/year.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3