Determination of Runoff Curve Numbers for the Growing Season Based on the Rainfall–Runoff Relationship from Small Watersheds in the Middle Mountainous Area of Romania

Author:

Strapazan Carina1ORCID,Irimuș Ioan-Aurel1,Șerban Gheorghe1,Man Titus Cristian1ORCID,Sassebes Laura2

Affiliation:

1. Faculty of Geography, Babeş-Bolyai University, 5–7 Clinicilor Street, 400006 Cluj-Napoca, Romania

2. Brasov Water Management System, “Olt” Water Basin Administration, Romanian Waters National Administration, 500084 Brasov, Romania

Abstract

The NRCS-CN (Natural Resources Conservation Service curve number) method, developed by the USDA (U.S. Department of Agriculture) is among the most widely used for the estimation of surface runoff from watersheds. Ever since its introduction in the 1950s, although it has been used to a great extent by engineers and hydrologists, the applicability of the original procedure used to determine its main parameter, the curve number (CN), to various regions with diverse environmental conditions, is still subject to many uncertainties and debates. This study presents a comparative analysis of different methods applied to determine curve numbers from local data in four watersheds located in the central part of Romania, within the mountain region surrounding the Brașov Depression. The CN values were not only computed using rainfall–runoff records from 1991 to 2020, but also determined from the standard NRCS tables documented in the National Engineering Handbook part 630 (NEH-630), for comparison purposes. Thus, a total of 187 rainfall–runoff data records from the study watersheds and five different methods were used to assess the accuracy of various procedures for determining the CN values, namely: tabulated CN (CN values selected from NRCS tables, TAB), asymptotic fitting (AF) of both natural and ordered data, median CN (MD), geometric mean CN (GM) and the arithmetic mean CN (AM) methods. The applicability of the aforementioned methods was investigated both for the original fixed initial abstraction ratio λ = 0.2 and its adjustment to λ = 0.05. Relatively similar results were found for the curve number-based runoff estimates related to the field data analysis methods, yet slightly better when the λ was reduced to 0.05. A high overall performance in estimating surface runoff was achieved by most CN-based methods, with the exception of the asymptotic fitting of natural data and the tabulated CN method, with the latter yielding the lowest results in the study area.

Funder

2023 Development Fund of the UBB

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3