Evaluating Magnitude Agreement and Occurrence Consistency of CHIRPS Product with Ground-Based Observations over Medium-Sized River Basins in Nepal

Author:

Upadhyay Surabhi,Silwal Priya,Prajapati RajaramORCID,Talchabhadel RockyORCID,Shrestha Sandesh,Duwal Sudeep,Lakhe HanikORCID

Abstract

High spatio-temporal resolution and accurate long-term rainfall estimates are critical in sustainable water resource planning and management, assessment of climate variability and extremes, and hydro-meteorology-related water system decisions. The recent advent of improved higher-resolution open-access satellite-based rainfall products has emerged as a viable complementary to ground-based observations that can often not capture the rainfall variability on a spatial scale. In a developing country such as Nepal, where the rain-gauge monitoring network is sparse and unevenly distributed, satellite rainfall estimates are crucial. However, substantial errors associated with such satellite rainfall estimates pose a challenge to their application, particularly in complex orographic regions such as Nepal. Therefore, these precipitation products must be validated before practical usage to check their accuracy and occurrence consistency. This study aims to assess the reliability of the Climate Hazards Group Infrared Precipitation with Stations (CHIRPS) product against ground-based observations from 1986 to 2015 in five medium-sized river basins in Nepal, namely, Babai, Bagmati, Kamala, Kankai, and the West Rapti river basin. A set of continuous evaluation metrics (correlation coefficient, root mean square error, relative bias, and Kling-Gupta efficiency) were used in analyzing the accuracy of CHIRPS and categorical metrics (probability of detection, critical success index, false alarm ratio, and frequency bias index). The Probability of Detection and Critical Success Index values were found to be considerably low (<0.4 on average), while the false alarm ratio was significant (>0.4 on average). It was found that CHIRPS showed better performance in seasonal and monthly time scales with high correlation and indicated greater consistency in non-monsoon seasons. Rainfall amount (less than 10 mm and greater than 150 mm) and rainfall frequency was underestimated by CHIRPS in all basins, while the overestimated rainfall was between 10 and 100 mm in all basins except Kamala. Additionally, CHIRPS overestimated dry days and maximum consecutive dry days in the study area. Our study suggests that CHIRPS rainfall products cannot supplant the ground-based observations but complement rain-gauge networks. However, the reliability of this product in capturing local extreme events (such as floods and droughts) seems less prominent. A high-quality rain gauge network is essential to enhance the accuracy of satellite estimations.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3