Evaluation of the High-Resolution CMORPH Satellite Rainfall Product Using Dense Rain Gauge Observations and Radar-Based Estimates

Author:

Habib Emad1,Haile Alemseged Tamiru2,Tian Yudong3,Joyce Robert J.4

Affiliation:

1. Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana

2. Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, Louisiana, and African Climate Policy Center, UNECA, Addis Ababa, Ethiopia

3. Earth System Science Interdisciplinary Center, University of Maryland, College Park, College Park, Maryland

4. NOAA Climate Prediction Center, Camp Springs, Maryland

Abstract

Abstract This study focuses on the evaluation of the NOAA–NCEP Climate Prediction Center (CPC) morphing technique (CMORPH) satellite-based rainfall product at fine space–time resolutions (1 h and 8 km). The evaluation was conducted during a 28-month period from 2004 to 2006 using a high-quality experimental rain gauge network in southern Louisiana, United States. The dense arrangement of rain gauges allowed for multiple gauges to be located within a single CMORPH pixel and provided a relatively reliable approximation of pixel-average surface rainfall. The results suggest that the CMORPH product has high detection skills: the probability of successful detection is ~80% for surface rain rates >2 mm h−1 and probability of false detection <3%. However, significant and alarming missed-rain and false-rain volumes of 21% and 22%, respectively, were reported. The CMORPH product has a negligible bias when assessed for the entire study period. On an event scale it has significant biases that exceed 100%. The fine-resolution CMORPH estimates have high levels of random errors; however, these errors get reduced rapidly when the estimates are aggregated in time or space. To provide insight into future improvements, the study examines the effect of temporal availability of passive microwave rainfall estimates on the product accuracy. The study also investigates the implications of using a radar-based rainfall product as an evaluation surface reference dataset instead of gauge observations. The findings reported in this study guide future enhancements of rainfall products and increase their informed usage in a variety of research and operational applications.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3