Abstract
An advection-diffusion model is proposed to simulate large wood transport during high flows. The mathematical model is derived from the wood mass balance, taking into consideration both the wood mass concentration and the log orientation, which affects log transport and, most importantly, wood accumulation. Focusing on wood mass transport, the advection-diffusion equation is implemented in a hydrodynamic model to provide a one-way coupled solution of the flow and of the floating wood mass. The model is tested on a large series of flume experiments, involving at least 30 logs and different control parameters (flow Froude number, log length, diameter, release point). The validation through the experimental data shows that the proposed model can predict the correct displacement of the most probable position of the logs and to simulate with a sufficient accuracy the planar diffusion of the wooden mass. Transversal wood distribution is more accurate than the streamwise one, indicating that a higher control on the longitudinal diffusion needs to be implemented.
Subject
Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献