Smart Data Blending Framework to Enhance Precipitation Estimation through Interconnected Atmospheric, Satellite, and Surface Variables

Author:

Beikahmadi Niloufar1,Francipane Antonio1ORCID,Noto Leonardo Valerio1ORCID

Affiliation:

1. Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy

Abstract

Accurate precipitation estimation remains a challenge, though it is fundamental for most hydrological analyses. In this regard, this study aims to achieve two objectives. Firstly, we evaluate the performance of two precipitation products from the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (GPM-IMERG) for Sicily, Italy, from 2016 to 2020 by a set of categorical indicators and statistical indices. Analyses indicate the favorable performance of daily estimates, while half-hourly estimates exhibited poorer performance, revealing larger discrepancies between satellite and ground-based measurements at sub-hourly timescales. Secondly, we propose four multi-source merged models within Artificial Neural Network (ANN) and Multivariant Linear Regression (MLR) blending frameworks to seek potential improvement by exploiting different combinations of Soil Moisture (SM) measurements from the Soil Moisture Active Passive (SMAP) mission and atmospheric factor of Precipitable Water Vapor (PWV) estimations, from the Advanced Microwave Scanning Radiometer-2 (AMSR2). Spatial distribution maps of some diagnostic indices used to quantitatively evaluate the quality of models reveal the best performance of ANNs over the entire domain. Assessing variable sensitivity reveals the importance of IMERG satellite precipitation and PWV in non-linear models such as ANNs, which outperform the MLR modeling framework and individual IMERG products.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Reference83 articles.

1. Precipitation from space: Advancing Earth system science;Kucera;Bull. Am. Meteorol. Soc.,2013

2. Hydrological simulation using TRMM and CHIRPS precipitation estimates in the lower Lancang-Mekong river basin;Luo;Chin. Geogr. Sci.,2019

3. How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity?;Tian;J. Hydrometeorol.,2018

4. Wehbe, Y., Temimi, M., and Adler, R.F. (2020). Enhancing precipitation estimates through the fusion of weather radar, satellite retrievals, and surface parameters. Remote Sens., 12.

5. Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., and Yoo, S.-H. (2015). NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. Version, 4.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3