Enhancing Precipitation Estimates Through the Fusion of Weather Radar, Satellite Retrievals, and Surface Parameters

Author:

Wehbe YoussefORCID,Temimi Marouane,Adler Robert F.

Abstract

Accurate and timely monitoring of precipitation remains a challenge, particularly in hyper-arid regions such as the United Arab Emirates (UAE). The aim of this study is to improve the accuracy of the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (GPM) mission’s latest product release (IMERG V06B) locally over the UAE. Two distinct approaches, namely, geographically weighted regression (GWR), and artificial neural networks (ANNs) are tested. Daily soil moisture retrievals from the Soil Moisture Active Passive (SMAP) mission (9 km), terrain elevations from the Advanced Spaceborne Thermal Emission and Reflection digital elevation model (ASTER DEM, 30 m) and precipitation estimates (0.5 km) from a weather radar network are incorporated as explanatory variables in the proposed GWR and ANN model frameworks. First, the performances of the daily GPM and weather radar estimates are assessed using a network of 65 rain gauges from 1 January 2015 to 31 December 2018. Next, the GWR and ANN models are developed with 52 gauges used for training and 13 gauges reserved for model testing and seasonal inter-comparisons. GPM estimates record higher Pearson correlation coefficients (PCC) at rain gauges with increasing elevation (z) and higher rainfall amounts (PCC = 0.29 z0.12), while weather radar estimates perform better for lower elevations and light rain conditions (PCC = 0.81 z−0.18). Taylor diagrams indicate that both the GWR- and the ANN-adjusted precipitation products outperform the original GPM and radar estimates, with the poorest correction obtained by GWR during the summer period. The incorporation of soil moisture resulted in improved corrections by the ANN model compared to the GWR, with relative increases in Nash–Sutcliffe efficiency (NSE) coefficients of 56% (and 25%) for GPM estimates, and 34% (and 53%) for radar estimates during summer (and winter) periods. The ANN-derived precipitation estimates can be used to force hydrological models over ungauged areas across the UAE. The methodology is expandable to other arid and hyper-arid regions requiring improved precipitation monitoring.

Funder

Khalifa University of Science and Technology

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3