Validation of Three Daily Satellite Rainfall Products in a Humid Tropic Watershed, Brantas, Indonesia: Implications to Land Characteristics and Hydrological Modelling

Author:

Wiwoho Bagus Setiabudi,Astuti Ike Sari,Alfarizi Imam Abdul Gani,Sucahyo Hetty Rahmawati

Abstract

A total of three different satellite products, CHIRPS, GPM, and PERSIANN, with different spatial resolutions, were examined for their ability to estimate rainfall data at a pixel level, using 30-year-long observations from six locations. Quantitative and qualitative accuracy indicators, as well as R2 and NSE from hydrological estimates, were used as the performance measures. The results show that all of the satellite estimates are unsatisfactory, giving the NRMSE ranging from 6 to 30% at a daily level, with CC only 0.21–0.36. Limited number of gauges, coarse spatial data resolution, and physical terrain complexity were found to be linked with low accuracy. Accuracy was slightly better in dry seasons or low rain rate classes. The errors increased exponentially with the increase in rain rates. CHIPRS and PERSIANN tend to slightly underestimate at lower rain rates, but do show a consistently better performance, with an NRMSE of 6–12%. CHRIPS and PERSIANN also exhibit better estimates of monthly flow data and water balance components, namely runoff, groundwater, and water yield. GPM has a better ability for rainfall event detections, especially during high rainfall events or extremes (>40 mm/day). The errors of the satellite products are generally linked to slope, wind, elevation, and evapotranspiration. Hydrologic simulations using SWAT modelling and the three satellite rainfall products show that CHIRPS slightly has the daily best performance, with R2 of 0.59 and 0.62, and NSE = 0.54, and the monthly aggregated improved at a monthly level. The water balance components generated at an annual level, using three satellite products, show that CHIRPS outperformed with a ration closer to one, though with a tendency to overestimate up to 3–4× times the data generated from the rainfall gauges. The findings of this study are beneficial in supporting efforts for improving satellite rainfall products and water resource implications.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3