Detecting Indonesian Monsoon Signals and Related Features Using Space–Time Singular Value Decomposition (SVD)

Author:

Mulsandi Adi12ORCID,Koesmaryono Yonny2,Hidayat Rahmat2ORCID,Faqih Akhmad2,Sopaheluwakan Ardhasena3

Affiliation:

1. Program Studi Meteorologi, Sekolah Tinggi Meteorologi Klimatologi dan Geofisika (STMKG), Tangerang Selatan 15221, Indonesia

2. Department of Geophysics and Meteorology, Faculty of Mathematics and Natural Science, IPB University, Bogor 16680, Indonesia

3. Agency for Meteorology Climatology and Geophysics, Jakarta 10720, Indonesia

Abstract

Several investigations have proven the existence of monsoons in Indonesia. However, this has received little attention due to the scientific argument that the region of 10° N–10° S is not monsoonal because it receives precipitation all year round. This study used space–time SVD analysis of atmospheric and oceanic field data for 30 years (1990–2020) to detect monsoon signals and related features. The single-field SVD analysis of rainfall revealed that the first mode accounts for only 33% of the total variance, suggesting it is highly variable. Both the PC space and time series show the well-known monsoon pattern. Further, the Indonesian monsoon regimes and phases are defined based on the revealed rainfall features. The wet season lasts from November to April, accounting for more than 77% of annual precipitation. The coupled-field SVD analyses show that Indonesian monsoon rainfall strongly correlates with local SST (PC1 accounts for 70.4%), and the pattern is associated with the Asian winter monsoon. The heterogonous vector correlation map analysis revealed that the related features during the monsoon, including the strengthening and weakening of subtropical anticyclones, the intertwining of westerly wind in the Indian Ocean, and variations in the north–south dipole structure of the ocean temperature, are linked to variations in Indonesia’s monsoon rainfall. This result can serve as the dynamic basis for defining the Indonesian monsoon index in the context of the center of action.

Funder

Pusat Pendidikan dan Pelatihan Badan Meteorologi Klimatologi dan Geofisika

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3