River Flow Measurements Utilizing UAV-Based Surface Velocimetry and Bathymetry Coupled with Sonar

Author:

Koutalakis Paschalis,Zaimes George N.

Abstract

Water velocity and discharge are essential parameters for monitoring water resources sustainably. Datasets acquired from Unoccupied Aerial Systems (UAS) allow for river monitoring at high spatial and temporal resolution, and may be the only alternative in areas that are difficult to access. Image or video-based methods for river flow monitoring have become very popular since they are not time-consuming or expensive in contrast to traditional methods. This study presents a non-contact methodology to estimate streamflow based on data collected from UAS. Both surface velocity and river geometry are measured directly in field conditions via the UAS while streamflow is estimated with a new technique. Specifically, surface velocity is estimated by using image-based velocimetry software while river bathymetry is measured with a floating sonar, tethered like a pendulum to the UAV. Traditional field measurements were collected along the same cross-section of the Aggitis River in Greece in order to assess the accuracy of the remotely sensed velocities, depths, and discharges. Overall, the new technique is very promising for providing accurate UAV-based streamflow results compared to the field data.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3