New Technologies to Assess and Map an Urban Riparian Area in Drama, Greece, and Determine Opportunity Sites for Litter Traps

Author:

Koutalakis Paschalis1ORCID,Gkiatas Georgios1ORCID,Iakovoglou Valasia2,Zaimes George N.12ORCID

Affiliation:

1. Geomorphology, Edaphology and Riparian Areas Laboratory (GERi Lab), Department of Forestry and Natural Environment Science, International Hellenic University, University Campus in Drama, 66100 Drama, Greece

2. Unesco Chair Con-Ε-Ect, 66100 Drama, Greece

Abstract

Riparian areas offer many ecosystem services, especially in urban settings. Their conservation can be complex because of the many urban anthropogenic pressures they face. Adopting new technological approaches can provide insights on the most cost-effective and sustainable management for riparian areas. In this study, different new technological approaches were implemented to assess and map environmental variables and find the optimal location of nature-based solutions (e.g., litter traps). The study area was Agia Varvara Park in Drama, Greece, a unique natural urban riparian area. The approaches utilized were categorized as aerial, terrestrial, and surface/underwater. Specifically, these approaches included unmanned aerial vehicles that incorporated high-resolution regular and thermal cameras to capture the surface environmental conditions and unmanned underwater vehicles to capture the underwater environmental conditions. The produced orthomosaics and digital surface models enabled us to estimate the boundaries of the water surface in Agia Varvara Park. A GPS tracker was also used to record the potential movement route of litter. Finally, a sonar device was utilized to estimate the water depth of potential cross-sections of Agia Varvara’s stream where the litter trap could be installed. The above datasets were used to develop spatial datasets and accompanying maps that were utilized to find the optimal opportunity sites for the litter trap. A litter trap is a floating device that gathers and maintains litter, vegetation, and other debris. Two specific locations were proposed based on water presence, water depth, channel’s width, limited vegetation for accessibility, wildlife existence, litter’s water route, and stopping location time. Such traps enable the collection of anthropogenic litter. In one location, a litter trap has been installed and is being tested. Overall, the above approaches could be used to suggest other nature-based solutions and/or their optimal location, thus enhancing the sustainable management of urban riparian areas.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3