A Rolling Bearing Fault Diagnosis Method Based on EEMD-WSST Signal Reconstruction and Multi-Scale Entropy

Author:

Ge Jianghua,Niu Tianyu,Xu Di,Yin Guibin,Wang Yaping

Abstract

Feature extraction is one of the challenging problems in fault diagnosis, and it has a direct bearing on the accuracy of fault diagnosis. Therefore, in this paper, a new method based on ensemble empirical mode decomposition (EEMD), wavelet semi-soft threshold (WSST) signal reconstruction, and multi-scale entropy (MSE) is proposed. First, the EEMD method is applied to decompose the vibration signal into intrinsic mode functions (IMFs), and then, the high-frequency IMFs, which contain more noise information, are screened by the Pearson correlation coefficient. Then, the WSST method is applied for denoising the high-frequency part of the signal to reconstruct the signal. Secondly, the MSE method is applied for calculating the MSE values of the reconstructed signal, to construct an eigenvector with the complexity measure. Finally, the eigenvector is input to a support vector machine (SVM) to find the fault diagnosis results. The experimental results prove that the proposed method, with a better classification performance, can better solve the problem of the effective signal and noise mixed in high-frequency signals. Based on the proposed method, the fault types can be accurately identified with an average classification accuracy of 100%.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3