Regional and Phased Vegetation Responses to Climate Change Are Different in Southwest China

Author:

Wang MengORCID,An Zhengfeng

Abstract

Southwestern China (SW) is simultaneously affected by the East Asian monsoon, South Asian monsoon and westerly winds, forming a complex and diverse distribution pattern of climate types, resulting in a low interpretation rate of vegetation changes by climate factors in the region. This study explored the response characteristics of vegetation to climatic factors in the whole SW and the core area of typical climate type and the phased changes in response, adopting the form of “top-down”, using linear trend method, moving average method and correlation coefficient, and based on the climate data of CRU TS v. 4.02 for the period 1982–2017 and the annual maximum, 3/4 quantile, median, 1/4 quantile, minimum and average (abbreviated as P100, P75, P50, P25, P5 and Mean) of GIMMS NDVI, which were to characterize vegetation growth conditions. Coupling with the trend and variability of climate change, we identified four major types of climate change in the SW, including the significant increase in both temperature and precipitation (T+*-P+*), the only significant increase in temperature and decrease (T+*-P−) or increase (T+*-P+) of precipitation and no significant change (NSC). We then screened out nine typical areas of climate change types (i.e., core areas (CAs)), followed by one T+*-P+* area, which was located in the center of the lake basin of the Qiangtang Plateau. The response of vegetation to climatic factors in T+*-P+* area/T+*-P+ areas and T+*-P− areas/NSC areas were mainly manifested in an increase and a significant decrease, which makes the response characteristics of vegetation to climatic factors in the whole SW have different directionality at different growth stages. Our results may provide new ideas for clearly showing the complexity and heterogeneity of the vegetation response to climate change in the region under the background of global warming.

Funder

Chaozhou Special Fund for Human Resource Development

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3